Towards Efficient Dynamic Integer Overflow Detection on
ARM Processors

Glenn Wurster
BlackBerry Limited

gwurster@blackberry.com

ABSTRACT

In this paper, we present an approach to limiting the im-
pact of integer overflow vulnerabilities by either trapping on
integer overflow, or using saturating arithmetic. We focus
our approach on efficient ARM processor detection of inte-
ger overflows at run-time using the current instruction set.
We prototype efficient processor detection of integer over-
flow using modified GCC. Based on the initial prototype
implementation and in-depth analysis, we identify current
shortcomings in ARM processors when dealing with integer
overflow. We propose minor tweaks in processor design to
further increase performance.

1. INTRODUCTION AND OVERVIEW

Modern languages and compilers attempt to defend against
specific classes of vulnerabilities through low overhead, min-
imally invasive approaches. Languages such as Java combat
use-after-free vulnerabilities by including garbage collectors
instead of requiring the developer to manage memory. Buffer
overflows are handled in Python through enforcing strict
limits on array indexes. Even programs written in C and
C++, which don’t have the same strict type safety checks,
benefit from features such as stack cookies, address space
layout randomization (ASLR), and non-executable data [14].

Integer overflows are one class of error that different lan-
guages attempt to combat in different ways. Java allows an
integer to overflow, Python detects the overflow and con-
verts the integer to a longer data type, and Swift throws
an exception on overflow. In C/C++, some compilers (e.g.
the GNU Compiler Collection (GCC) and Clang) support
generating extra code to abort program execution when an
overflow is detected [17]. Widespread integer overflow de-
tection can introduce costly run-time overhead though, pro-
hibiting its use in a performance critical production environ-
ment. Static analysis helps find possible integer overflows in
languages such as C, but often involves specialized analysis
engines run in development environments.

(©2016 BlackBerry

James Ward
BlackBerry Limited

jaward@blackberry.com

Regardless of the language, all strategies for dynamically
mitigating the effects of integer overflow require detecting
that an overflow has occurred (or will occur) and taking ap-
propriate action. In this paper, we present two approaches
to mitigating the effects of unintended integer overflows,
with a focus on efficient run-time performance. Our pri-
mary approach relies on generating a signal whenever an
overflow occurs. This signal allows the developer or lan-
guage run-time to quickly pinpoint the source of an integer
overflow and take corrective action. Depending on the lan-
guage, handling the signal might result in conversion to a
longer data type, or an exception being thrown. Our al-
ternate approach relies on saturating arithmetic, preventing
the overflow. While trapping has been attempted before [17,
7], we focus on improving the performance.

To demonstrate that our approaches are sound, we mod-
ify GCC to mitigate overflows on the ARM processor. We
use the modified compiler to test a variety of applications
on ARM. Our initial implementation and results provide the
base for a proposal that would allow integer overflow detec-
tion to enjoy the same widespread deployment and minimal
overhead as ASLR or other mitigations.

Section 2 gives background on integer overflow vulnerabil-
ities and saturating arithmetic. Section 3 discusses our im-
plementation of saturating and trapping integer overflows for
ARM. Section 4 discusses the results of our prototype imple-
mentation. Section 5 discusses a potential method forward,
leading to broad deployment of integer overflow mitigations.
Section 6 discusses related work. We summarize in Section
7.

2. OVERVIEW AND BACKGROUND

We now discuss integer overflow vulnerabilities and satu-
rating arithmetic.

2.1 Integer Overflow Vulnerabilities
Brumley et al. [7] classify integer overflows into three main
types:

1. An integer wrapping vulnerability is caused when arith-
metic is performed on an integer, with the result being
too large to fit into the memory allocated. One exam-
ple is attempting to add 1 to UINT_MAX (OxFFFFFFFF),
which results in the value 0x100000000. When trun-
cated to 32-bits, the result is 0 (0x00000000), which is
0x100000000 modulo 2%? (i.e., bits 33 and above are
discarded).

2. A signedness error exists when a signed integer is inter-
preted as unsigned, or vice versa. Since most platforms
represent integers in two’s compliment, the signed in-
teger -2 (OxFFFFFFFE) on a 32 bit platform is the same
as the unsigned value UINT_MAX - 1. Conversions be-
tween signed and unsigned integers is straightforward
for any value in the range [0, INT_MAX]. Unless care
is taken, casting values outside that range might lead
to a vulnerability.

3. Truncation overflow exists when an integral type is cast
into a narrower type (e.g., casting an integer into a
short), causing a loss of information and an overflow if
the number cannot be represented by the destination
type. For example, if an int equal to 32768 were to
be casted into a short, the result would be -32768.

While intentional integer overflows can be safely accounted
for, unintentional cases have lead to severe security vulner-
abilities for applications written in C. According to statistics

obtained from the National Vulnerability Database (NVD) [30],

more than half of integer overflow vulnerabilities reported
have a score of 7-10 (high) on the CVSSv2 scale [25].

It is the use of an overflowed value in referencing or al-
locating memory that typically causes a vulnerability. In
one example, the result of an overflow is used in the call to
malloc (), allocating a buffer that is smaller than expected.
Writing to this buffer beyond the allocated length can lead
to an exploitable vulnerability. In a language such as Java,
this scenario would not lead to a vulnerability — the over-
flow may occur, but attempting to access memory beyond
the allocated array would result in an exception being raised.

Most developers continue to use custom pre- and post-
condition checking in production code, even when using static
and dynamic analysis tools to find the overflows. Custom
pre- and post-condition checks are not always easy to rea-
son about, and must be done without relying on undefined
behavior [33, 34]. The C standard leaves signed integer over-
flow behavior undefined, and modern compilers may use that
fact to optimize away certain security checks [16, 19].

Another issue surrounding integer overflow checking is
that while the concept may seem relatively simple, writ-
ing proper checks for all vulnerable cases may be difficult.
Zhang et al. [44] describe how an integer overflow vulnerabil-
ity was patched in the CUPS printing system, but required
a second patch to fully fix the issue.

2.2 Detection of Overflow in Languages

While Python 3 uses only unlimited precision integers [32],
Python 2.7 only uses unlimited precision integers when over-
flow is detected. The int_add function is responsible for
detecting whether addition overflowed with the long data
type, storing the result to a longer data type if necessary.
The int_add function uses XOR to detect overflow, which is
reproduced in Listing 1. When compiled at -O2 in GCC, the
overflow check used an additional four ARM instructions -
two instructions to compute the XOR, and two branch in-
structions. The overflow check used three additional clock
cycles on a MSM8974 processor.

In PHP 5.4.36, if an integer overflow occurs, the result
is stored in a double [31]. Addition is implemented in the
add_function, reproduced in Listing 2. When compiled at -
02 in GCC, the overflow check used an additional four ARM
instructions - two comparisons, and two branches, very sim-

ilar to the ARM assembly produced for Python 2.7. The
overflow check used three clock cycles on a MSM8974 pro-
Cessor.

static PyObject *

int_add (PyIntObject *v, PyIntObject *w)

{
register long a, b, x;
CONVERT_TO_LONG (v, a);
CONVERT_TO_LONG (w, b);

/* casts in the line below avoid undefined

behaviour on overflow */
x = (long)((unsigned longla + b);
if ((x7a) >= 0 || (x"b) >= 0)
return PyInt_FromLong(x);

return PylLong_Type.tp_as_number->
nb_add ((PyObject *)v, (PyObject *)w);

Listing 1: Overflow detection in Python 2.7

case TYPE_PAIR(IS_LONG, IS_LONG): {
long 1lval = Z_LVAL_P(opl) + Z_LVAL_P(op2);

/* check for overflow by comparing sign
bits */
if ((Z_LVAL_P(opl) & LONG_SIGN_MASK) ==
(Z_LVAL_P(op2) & LONG_SIGN_MASK) &&
(Z_LVAL_P(opl) & LONG_SIGN_MASK) !=
(lval & LONG_SIGN_MASK))

{
ZVAL_DOUBLE (result,
(double) Z_LVAL_P(opl) +
(double) Z_LVAL_P(op2));
} else {
ZVAL_LONG (result, 1lval);
}
return SUCCESS;

Listing 2: Overflow detection in PHP 5.4

The Swift language [1] adds a trap and branch after each
arithmetic assembly instruction. The standard arithmetic
symbols (e.g., +) will cause an exception to be thrown if
the operation would cause an overflow. In order to overflow
without causing an exception, overflowing operators were
introduced. The overflowing versions of the arithmetic op-
erators include an ampersand prefix.

Both Java and C allow integer overflow to occur without
throwing an exception. The C specification [23] states that
signed integer overflow is undefined behavior, although most
compilers will wrap. Some C/C++ compilers though, when
configured, will detect overflow in integers [17, 7, 12] and
cause a fault.

Regardless of the approach used to deal with integer over-
flow, many languages need to be able to quickly identify that
an overflow has occurred and act [26]. Even if static analysis
is used to reduce the number of checks, run-time checks can-
not be entirely eliminated. In the remainder of this paper,
we focus on fast dynamic mitigation of integer overflows.

2.3 A note on Saturation

Saturating arithmetic has been used in digital signal pro-
cessing (DSP) and embedded programming, where integer
wrapping can lead to significant signal distortion when pro-
cessing analog signals. Saturating arithmetic prevents an

overflow by forcing an arithmetic operation that would over-
flow to instead return the maximum (or minimum) value
possible for the data type. As an example, multiplying 19
by 16 gives 304 which does not fit into a char (assuming
a width of 8 bits). Without saturating, the result would
overflow and return 48, but saturating multiplication would
result in 127 (the largest value possible for a character).
Because saturating arithmetic forces variables to their min-
imum or maximum instead of overflowing, using a saturated
value when referencing memory typically results in a mem-
ory violation (NULL pointer dereference or attempt to ac-
cess privileged kernel memory). Integer overflows mitigated
using saturating arithmetic are therefore turned from a po-
tential vulnerability into (at worst), a denial of service.
Saturating arithmetic for integer overflow mitigation both
borrows from failure oblivious computing [36], and also adds
to it. Saturating arithmetic allows the application to con-
tinue running (in contrast to aborting execution immedi-
ately when an integer overflow is detected), while at the
same time making the detection of subsequent memory er-

rors more likely. Indeed, saturating arithmetic protects against

CVE-2013-4511 [15], while at the same time allowing the
kernel to continue running.

On ARMv6+ and later processors, the QADD and QSUB in-
structions support saturating addition and subtraction of
signed 32-bit integers [2]. The SSAT and USAT instructions
will saturate a value to a specific width, dealing with trun-
cation overflow, but cannot account for overflow in the pre-
ceding arithmetic instruction. Because of hardware support
and the potential to mitigate integer overflows, we include
saturation alongside other methods that raise an exception
on integer overflow.

3. IMPLEMENTATION

We first discuss our ARM assembly language integer over-
flow detection routines. We then discuss a prototype GCC
implementation making use of the assembly routines. We
present three different mitigations against integer overflows;
branchless detection of overflows, branching when an over-
flow is detected, and using saturation. Including both branch-
less and branching forms of trapping allows us to determine
whether the ARM processor can execute one faster than the
other.

Our branchless trapping approach takes advantage of con-
ditional execution, writing to memory pointed to by the pro-
gram counter (r15) if the previous operation sets the over-
flow flag. On modern platforms, including Linux, program
code is generally marked read-only, so the write will cause
a SIGSEGYV. If the application code has write enabled, our
branchless code would need to be modified to avoid creat-
ing a vulnerability. During debugging, branchless trapping
was useful in identifying the exact source line for an integer
overflow in target programs.

Many of the routines update the flags register. When
modifying GCC, we flagged the routines as clobbering the
flags register, relying on GCC to perform the correct instruc-
tion reordering.

3.1 Signed Overflows

We first discuss handling of signed integer operations. For
simplicity, registers are fixed in our examples. Our proto-
type implementation discussed below allows GCC to per-
form standard register allocation.

3.1.1 Addition & Subtraction

Signed saturating addition and subtraction can be imple-
mented with ARM’s built-in saturating addition and sub-
traction instructions QADD and QSUB [2]. They saturate the
result of r1+r2 into r0 with the range —23! < ro < 231 —1.
Listing 3 contains our implementation of signed addition.

/* Conditional trap add */
adds r0, rl, r2
strvs 10, [r15]

/* Branching trap add */
adds r0, rl, r2
bvs .OVERFLOW

/* Saturating add */
qadd r0, rl, r2

Listing 3: ARM instructions for signed addition

/* Conditional trap subtract */
subs r0, rl, r2
strvs r0, [r15]

/* Branching trap subtract */
subs r0, rl, r2
bvs .OVERFLOW

/* Saturating subtract */
qsub r0, rl, r2

Listing 4: ARM instructions for signed subtraction

Subtraction is very similar for signed integers. In both
cases, signed trapping is performed using either conditional
execution or branching. Listing 4 contains our implementa-
tion for signed subtraction.

3.1.2 Multiplication

Signed multiplication trapping can be done in three in-
structions [5], with saturation implemented in four instruc-
tions.

/* Conditional trap multiplication */
smull r0, r3, rl, r2

cmp r3, rO0, asr #31

strne r0, [r15]

/* Branching trap multiplication */
smull r0, r3, rl, r2

cmp r3, rO0, asr #31

bne .OVERFLOW

/* Saturating multiplication x/
smull r0, r3, ri, r2

cmp r3, r0, asr #31
mvngt r0, #0x80000000
movlt ro, #0x80000000

Listing 5: ARM instructions for signed multiplica-
tion

The code in Listing 5 first multiplies r1 and r2 into a
double wide integer using SMULL, storing the lower 32 bits
in r0 and the upper 32 bits in r3. It then compares the
high bits to the low bits arithmetically right shifted by 31,
using the CMP instruction. Shifting arithmetically will either
set all bits if the high bit was set (i.e., it was a negative
number), or will clear all bits if the high bit was clear (i.e.,

it was a positive number). If it is a negative result, the upper
32 bits of the multiplication result (which are in r3) must
also be all set if the result did not overflow. If the result
is positive, the upper 32 bits will all be cleared if there was
not an overflow. For the saturating variant, we use the MVN
and MOV instructions to set the result to either Ox7FFFFFFF
or 0x80000000 on overflow.

The implementation is loosely based off of GCC’s -ftrapv
multiplication test and a blog post [5].

3.1.3 Left Shift

In addition to supporting basic arithmetic, we have chosen
to mitigate left shift. Because developers will sometimes use
shift instead of multiplication, supporting both trapping and
saturating on shifts might catch additional errors.

In the case of r1 << r2, the code in Listing 6 first counts
the number of leading zeros in r1 (using CLZ), comparing the
result to r2 (using CMP). If the number of leading zeros in r1
is greater than the number stored in r2, a shift can be done
without causing an overflow. Shifting a negative number or
by a negative number is undefined in the C specification [23],
and we choose to trap. In the saturating case, we saturate
to Ox7FFFFFFF. If programs depend on shifts using negative
numbers, the assembly can be updated with additional in-
structions to support a different undefined behavior.

/* Conditional trap left shift =/
clz r3, ri

cmp r3, r2

1slhi r0, ri, r2

strls ro, [r15]

/* Branching trap left shift x/

clz r3, ri

cmp r3, r2

1s1 r0, rl, r2
bls . OVERFLOW

/* Left saturating shift */

clz r3, ril

cmp r3, r2

1slhi r0, ril, r2
mvnls r0, #0x80000000

Listing 6: ARM instructions for signed left shift

/* Conditional truncate */

mov r0, rl, asr #7
teq r0, rl, asr #31
and r0, rl, #O0OxFF
strne r0, [r15]

/* Branching trap truncate x*/

mov r0, rl, asr #7
teq r0, rl, asr #31
and r0, rl, #OxFF
bne .OVERFLOW

/* Saturating truncate */
ssat r0, #8, ri

Listing 7: ARM instructions for signed truncation
to 8 bit

We recognize that saturating a shift operator is contro-
versial. The saturating shift operator results in bits being
set in the result if an overflow occurs that would not have

been set otherwise. If the developer is using the shift oper-
ator for bit manipulation, saturating will significantly alter
the results. If, however, the developer was using the shift
operator to perform multiplication, then saturating might
be reasonable. We include saturating shift because it can
overflow, but recognize that some developers will prefer to
omit it.

3.1.4 Truncation

Truncating a variable from 32 bits to 8 bits is done by
checking that bits 8 through 31 are all the same as the sign
bit, illustrated in Listing 7.

3.1.5 Casting to Unsigned

Catching an overflow during a cast to unsigned involves
checking whether the value being cast is less than 0 (or
the high bit is set). The code we used is in Listing 8. A
compare-negative instruction (CMN) is used in conjunction
with a branch if carry set (BCS) so that Table 5 uses consis-
tent branches.

/* Conditional cast */
cmp rl, #0

mov r0, ri

strlt r0, [r15]

/* Branching trap cast */

cmn rl, #0x80000000
mov r0, ril
bcs .OVERFLOW

/* Saturating cast */
cmp rl, #0
mov r0, ri
movlt r0, #0

Listing 8: ARM instructions for casting signed to
unsigned

3.2 Unsigned Overflows

Catching overflows on unsigned arithmetic is similar to
the approach for signed integers, except that the QADD and
QSUB instructions cannot be used. Furthermore, the carry bit
must be checked instead of overflow bit for most arithmetic
operations.

3.2.1 Addition & Subtraction

As QADD does not support unsigned integers, the code in
Listing 9 needs to explicitly saturate to UINT_MAX on over-
flow. The same applies for unsigned subtraction, except that
we saturate to 0 in Listing 10:

/* Conditional trap addition */
adds r0, rl, r2
strcs ro0, [r15]

/* Branching trap addition */
adds r0, rl, r2
bcs .OVERFLOW

/* Saturating addition */
adds r0, rl, r2
mvncs r0, #0

Listing 9: ARM instructions for unsigned addition

/* Conditional trap subtraction */
subs r0, rl, r2
strcc r0, [ri15]

/* Branching trap subtraction */
subs r0, ril, r2
bcc .OVERFLOW

/* Saturating subtraction x/
subs r0, rli, r2
movcc rO, #0

Listing 10: ARM instructions for unsigned subtrac-
tion

For both unsigned addition and subtraction, we can use
the carry flag to determine whether we have overflowed dur-
ing a calculation and update the result accordingly.

3.2.2 Multiplication

Unsigned multiplication is performed similar to the signed
variant.

/* Conditional trap multiplication */
umull r0, r3, rl, r2

cmp r3, #0

strne r0, [r15]

/* Branching trap multiplication */
umull r0, r3, rl, r2

cmp r3, #0

bne .OVERFLOW

/* Saturating multiplication */
umull r0, r3, rl, r2

cmp r3, #0

mvnne r0, #0

Listing 11: ARM instructions for unsigned multipli-
cation

The code in Listing 11 first multiplies r1 and r2, storing
the resulting high bits into r3 and low bits into rO using
the UMULL instruction. Unlike the signed variant, overflow
occurred if any of the bits in r3 are non-zero, and is checked
using the CMP instruction.

3.2.3 Left Shift

/* Conditional trap left shift */
clz r3, ri

cmp r3, r2

1slcs r0, rl, r2

strcc r0, [r15]

/* Branching trap left shift x/

clz r3, ri

cmp r3, r2

1sl r0, rl, r2
bcc . OVERFLOW

/* Saturating left shift */

clz r3, ri
cmp r3, r2
1slcs r0, rl, r2
mvncc r0, #0

Listing 12: ARM instructions for unsigned left shift

Unsigned left shift is implemented the same as signed left
shifting, with the exception that we saturate to UINT_MAX
instead of INT_MAX in Listing 12. We count the leading zeros
in the value we are shifting (using CLZ), and compare that
to the amount we need to shift by. If the number of leading
zeros is greater than or equal to the amount we are shifting
by, the operation will not overflow. The trapping version
replaces the conditional move with a BCC instruction.

3.2.4 Truncation

Truncating a variable from 32 bits to 8 bits is done by
checking that the input value is less than 256. Listing 13
use code to compare the input to 256, trapping or branching
after performing the actual truncation using an AND opera-
tion.

/* Conditional truncate */
cmp rl, #OxFF

and r0, rl, #O0xFF
strhi r0, [r15]

/* Branching trap truncate */

cmp rl, #0x100
and r0, rl, #O0xFF
bcs .OVERFLOW

/* Saturating truncate */
usat r0, #8, ri

Listing 13: ARM instructions for unsigned trunca-
tion to 8 bit

3.2.5 Casting to Signed

Catching an overflow during a cast to signed involves check-
ing whether the high bit is set (which would result in a neg-
ative signed integer). The code is illustrated in Listing 14.

3.3 Adding Integer Overflow Checking to GCC

While dynamic integer overflow checks are required in
many different programming languages, we choose to con-
centrate on C for our prototype implementation. Many in-
terpreters for other languages are written in C [26], and the
majority of integer overflow vulnerabilities have affected ap-
plications written in C.

/* Conditional cast */
tst rli, #0x80000000
mov r0, ri

strne r0, [ri15]

/* Branching trap cast */

cmn ril, #0x80000000
mov r0, ril
bcs .OVERFLOW

/* Saturating cast */

tst rl, #0x80000000
mov r0, ri
mvnne r0, #0x80000000

Listing 14: ARM instructions for casting unsigned
to signed

To evaluate our detection operations, we modified GCC
to use the techniques discussed above. For completeness,
we implemented both the trapping and saturation variants
on both signed and unsigned integer arithmetic operations,

including left shift. Test applications from the performance
section were compiled with overflow mitigation by using a
newly-defined command line flag.

Our decision to allow saturating and trapping of unsigned
integers will no doubt be a controversial one, even if our end-
goal is to evaluate run-time integer overflow performance
for all languages. The C standard specifies that “compu-
tation involving unsigned operands can never overflow, be-
cause a result that cannot be represented by the resulting
unsigned integer type is reduced modulo the number that is
one greater than the largest value that can be represented by
the resulting type [23].” We chose to implement mitigation
for unsigned integers for the following reasons:

e CVE-2013-4511 [15] involved code using unsigned inte-
gers. A solution only affecting signed variables would
require changing variable types in an already-written
application in order to enable protection

e Because interpreters for other languages are often writ-
ten in C, and might use different unsigned integer over-
flow semantics.

Overflow mitigation attributes are applied to each vari-
able individually and tracked throughout the compilation
process, extending on previous work in GCC that supports
saturating fixed point arithmetic. Using a combination of
new command line flags, a new pragma, and a new vari-
able attribute, fine-grained mitigations can be applied at
the per-variable level if required. The mitigation logic is
implemented in the back end by extending the ARM regis-
ter transfer language (RTL) with new instruction patterns
called insns. Mitigating and wrapping variables may be
used together. During testing, mitigations were typically
enabled using the command line flag as opposed to using
the pragma or variable attributes.

The choice between trapping using a branch, trapping us-
ing conditional execution, and saturating is selected in our

prototype by the command line flag -fioverflow-type=<method>.

The exception raising code for our branch implementation
generated a SIGSEGV by accessing the memory at address
0, and is shown in Listing 15.

Signed regular and modulo division can only overflow if
performing the operation INT_MIN / -1 and INT_MIN % -1
respectively. Signed negation can only overflow when negat-
ing INT_MIN. We are not aware of any vulnerabilities caused
by overflow on division, omitting these operations from the
GCC prototype.

.OVERFLOW:
/* Generate SIGSEGV */
mov rO, #O0
str r0, [r0, #0]

Listing 15: Branch target for overflow trap

4. RESULTS

This section focuses on the results of our implementation.
We discuss whether the mitigation approaches would pre-
vent against known vulnerabilities, performance of our im-
plementation, areas of intentional overflows, and the limita-
tions of our current implementation.

4.1 Performance

To test performance, we added a -fioverflow-type=count
argument to GCC. When enabled, each arithmetic instruc-
tion output by the compiler also output a new assembly in-
struction ioc #<index>. Binutils was updated to recognize
the ioc ARM assembly instruction and output appropriate
machine code. QEMU was configured to recognize the in-
struction and increment a counter indexed by the operand to
ioc. Using this approach, we were able to count how many
of each arithmetic operation was performed in the actual
running program. Table 1 lists the percentage of instruc-
tions executed for each operator on each application.

We also created a synthetic benchmarking test application
which measured the overhead of each type of arithmetic op-
eration under each mitigation on an MSM8974 processor,
listing our results in Table 2. Using the data from Table 1
and 2, we estimate the performance overehad for each appli-
cation in 1. Even though -ftrapv does not affect unsigned
instructions, we included it for comparison. We are signifi-
cantly faster than -ftrapv in all but the openssl case. The
performance numbers for openssl are worse because most
arithmetic operations were unsigned, which -ftrapv does
not mitigate.

We also ran the dhrystone benchmark on the MSM8974
processor under all different mitigation methods, listing our
results in Table 3. Our performance results with dhrystone
are better than those calculated in Figure 1 due to factors
such as processor pipelining and branch prediction. We also
include results using Clang 3.4’s -ftrapv and -fsanitize
for signed and unsigned integer overflows.

Mitigation Result
Base Case 10,060,362
Saturating 9,199,632
Trapping 9,233,610
Branching 9,960,159
gce —ftrapv 5,136,107
clang -ftrapv 4,118,616
clang -fsanitize 4,258,944

Table 3: Dhrystone Performance

While dhrystone benchmark overheads of between 1% and
8.5% are significantly better than the 50% overhead of -
ftrapv, in some environments those performance numbers
will still be unreasonable. We therefore conclude that pro-
cessor support is necessary to achieve significant further re-
ductions in overhead, and discuss potential improvements to
performance overhead in Section 5.

4.2 Intentional Overflows

On occasion, developers will intentionally cause integer
overflows. A linear equation based pseudo-random number
generator will often truncate the result to 232 by allowing
integer overflow in the arithmetic operations. Overflows are
also used intentionally in floating point emulation [16] and
when computing large modulus [7].

Our primary approach of branching to exception raising
code whenever an overflow occurs was fastest. We also found
during debugging that the branchless detection made in-
tentional overflows easier to identify. Both approaches pre-
vented subtle undetected errors from being introduced. In
addition to testing saturation with our synthetic benchmark

Title signed + signed — signed * signed << | unsigned + unsigned — unsigned * unsigned <<
dhrystone 2.65% 0.79% 0.26% 0.00% 0.53% 0.00% 0.00% 0.00%
gzip 0.20% 0.51% 0.00% 0.20% 1.35% 4.28% 0.05% 0.74%
gunzip 0.44% 0.71% 0.00% 0.00% 2.96% 2.17% 0.89% 0.00%
tar 6.21% 0.00% 0.00% 0.00% 1.51% 0.78% 0.15% 0.13%
untar 10.48% 0.17% 0.01% 0.00% 0.16% 0.03% 0.00% 0.00%
ffmpeg 9.84% 0.83% 3.83% 0.31% 0.01% 0.00% 0.01% 0.01%
openssl 0.23% 0.85% 0.04% 0.00% 4.65% 0.54% 1.74% 3.10%
sqlite 1.20% 0.65% 0.29% 0.00% 0.76% 0.16% 0.10% 0.16%
Table 1: Percentage of instructions executed

Title Base Saturating Trapping Branching Ftrapv

signed + 100.00% 100.00% 103.00% 103.00% 128.44%

signed - 100.00% 100.00% 102.99% 101.50% 128.45%

signed * 100.00% 121.90% 117.97% 113.47% 159.86%

signed << 100.00% 107.00% 104.66% 104.65% 100.59%

unsigned + | 100.00% 102.66% 102.22% 101.33% 100.01%

unsigned - 100.00% 102.65% 101.32% 101.32% 100.00%

unsigned * 100.00% 111.95% 115.93% 107.97% 103.98%

unsigned << | 100.00% 111.64% 104.66% 102.49% 100.44%

Table 2: Run-time overhead for each operator and mitigation technique, with the operator being 1% of total

executed instructions

and dhrystone, we ran tar and gzip with saturation enabled
and did not encounter any errors. Raising an exception,
however, is more useful in pinpointing intentional overflows.

4.3 Limitations of the Prototype

Our current implementation only applies to 32-bit types.
Applications that perform a majority of their calculations
with other data types (e.g., 8, 16 or 64bit values) will not
have mitigations applied to them. Our implementation can
be extended to types with other lengths through additional
RTL instructions. Expanding support to include types other
than 32bit would also allow our implementation to support
mismatched types, including truncation overflows, as de-
scribed in Section 2.1.

During testing, a number of overflows were found in the
binaries. The ffmpeg tool shifts a negative number, which
is undefined behavior according to the C specification. Sev-
eral of the tools also overflowed counters. While none of the
errors found were security vulnerabilities, fixing pre-existing
overflows was an iterative process. Finding and fixing over-
flows could be improved in the future by keeping track of the
location of each exception instead of immediately aborting
on integer overflow.

Our prototype always includes mitigations for all arith-
metic operations, including shift. Disabling mitigations on
operators like left shift would provide the developer with
greater flexibility.

S. BUILDING ON THE SOLUTION

The minimum number of additional instructions for each
operation are given in Table 4, with additional clock cy-
cles for the MSM8974 in brackets. Tests were performed in
a tight assembly loop using the performance monitor cycle
count register [4]. We include integer truncation and signed-
ness operations in our synthetic tests, even though our GCC
prototype did not mitigate these operations. We chose cast-

ing from 32 to 8 bit as a representative sample. Several clock
cycles were added for multiplication and shifting.

Signed Unsigned
Trap Trap
oP Cond. Branch Sat Cond. Branch =
+ 1(1) 1(1) 0(0) | 1(1) 1(1) 1(1)
— 1(1) 1(1) 0(0) | 1(1) 1(1) 1(1)
* 2 (4) 2 (3) 313) | 2(3) 2 (2) 2 (1)
<< 3 (1) 3(2) 3(3) | 3(1) 3 (1) 3 (3)
Cast | 3 (2) 3(2) 0(0) | 2(1) 2 (1) 0 (0)
Sign | 2(1) 2(1) 110|210 210 2@

Table 4: Additional Assembly Instructions (Addi-
tional Clock Cycles)

Even though our approach is specific to the ARM archi-
tecture, our attempt to perform fast overflow checking on
integer arithmetic has lead us to several additional observa-
tions about processor architecture:

e While a processor will generate a software interrupt
on divide by zero and invalid memory accesses, the
option to generate a software interrupt on overflow is
limited to MIPS and ALPHA architectures [27, 13].
On all other architectures, the application must com-
bine each arithmetic operation with subsequent jump
and interrupt instructions to trap an overflow.

e While the standard addition and subtraction instruc-
tions on ARM allow immediate operands, the satu-
rating versions do not. In practice, the compiler re-
ordered and combined constants in order to minimize
the performance impact. During our performance test-
ing, we saw a 3% increase in the number of instructions
executed by removing immediate operands.

700 %

600 %

500 %

400 %

300 %

200 %

100 %

dhrystone Zip gunzip tar

Base
Saturating
Trapping
Branching
Ftrapv

[

untar ffmpeg openssl sglite

Figure 1: Expected Performance Overhead

e On ARM, updating the condition codes during arith-
metic is optional. To avoid pipeline stalls, the GCC
compiler will often re-order instructions, placing an
arithmetic instruction which does not update the flags
register between a compare (which does update the
flags register) and subsequent branch. Because the
flags must be set in order to detect overflow, our mit-
igations reduce the flexibility of the compiler in re-
ordering instructions. Furthermore, the ARMv4 and
earlier processors corrupt the carry and overflow flags

on multiplication [2], so these instructions were avoided.

e The ARM instruction set has a QC (saturating) flag
[2]. The QC flag is sticky, only being cleared by the
MSR instruction. This flag would allow consolidating
overflow checks for signed arithmetic after a sequence
of arithmetic operations, and might improve perfor-
mance. We did not implement this approach in our
prototype because of extensive compiler changes re-
quired. The QADD and QSUB instructions set the QC
flag in addition to saturating the result. The SMLA
and SMLAW instructions update the QC flag, but do not
saturate the result, and do not work with two 32bit
operands.

e A processor does not always have sufficient informa-
tion to determine whether an integer overflow has oc-
curred. The same instruction is often used for both
signed and unsigned arithmetic. Instead, the proces-
sor sets both the overflow and carry bits, which must
be checked by the application after each arithmetic
operation that might overflow. The carry bit indicates
overflow in unsigned operations, and the overflow bit
indicates signed integer overflow. The flags must be
checked after each arithmetic operation because they
will be reset with the next instruction that updates the
flags. This adds significant overhead when implement-
ing trapping arithmetic.

5.1 A Proposed Path Forward

Processors can easily keep track of when integer overflow
happens, and will indicate an overflow by updating the sta-
tus register flags. Unfortunately, the method chosen to con-
vey this information to the application is inefficient, requir-
ing a check after each arithmetic operation. In order to
improve performance, others have chosen to use static anal-
ysis and similar approaches to limit the number of overflow
checks. Many languages, however, including Python, Swift,

and PHP, continue to require fast dynamic detection of in-
teger overflows.

Modifying processor architecture to generate a software
exception would improve performance overhead significantly,
and would benefit all languages that currently attempt to
detect and mitigate integer overflows. Unfortunately, the
lack of awareness by the processor about the type of arith-
metic being performed (signed or unsigned) appears to be
the largest roadblock. On x86 [21], instruction prefixes could
be created to indicate that the following arithmetic instruc-
tion should trap on signed or unsigned overflow. There does
not, however, appear to be space in the current fixed-width
instruction set of ARM to distinguish between signed and
unsigned operators with the current arithmetic instructions.
As an alternative, the processor could have a signed/un-
signed mode flag, which could be updated by the applica-
tion as required (i.e., set once, before a set of signed integer
operations).

An alternative modification, which leaves the instruction
set relatively untouched, is a slight variation of our branch-
ing mitigation. Rather than attempting to add many new in-
structions to the architecture, we tweak a few instructions to
update the flags properly, allowing us minimize block length
and take advantage of current and future branch prediction
improvements. For ARM, this involves the following steps:

e Either create a new multiplication instruction, or mod-
ify the current multiplication instruction to properly
update overflow and carry flags when requested. In
Table 5, we assume the MULS instruction is updated.

e Create a left shift instruction (e.g., arithmetic shift
left, or ASL) which updates the overflow flag if any set
bits are shifted out of the register.

e Update the division and modulo division instructions
to account for overflow and set the flags register if re-
quested. Recall from above that signed regular and
modulo division can only overflow if performing the op-
eration INT_MIN / -1 and INT_MIN % -1 respectively.

e In hardware or microcode, optimize the branch pre-
diction and instruction merging for a forward branch
checking overflow or carry following an arithmetic in-
struction that sets the flags register. Assume the branch
is not taken.

Our proposed assembly language instructions for the ARM
processor, taking into account a modified multiplication and
shift instruction, are shown in Table 5. For consistency, we
propose always branching to a label at a positive offset on
overflow, and not branching if an overflow does not happen.
The addition and subtraction operations are backwards com-
patible with current processors, but the multiplication and
shift operators rely on new instructions.

In higher level languages such as C, having the ability
for the compiler to detect and respond to overflows might
improve program performance in the long-run. Instead of
performing arithmetic twice (the first time to detect if an
overflow will occur while avoiding undefined compiler be-
havior [33, 34, 40]), the check can be replaced with an ap-
propriate signal handler or other language construct, and
the arithmetic performed once. The C language does not
have a single uniform way to perform an integer overflow

Operation ARM Template

Signed + adds .x*

bvs +.LABEL
Signed — subs .*

bvs +.LABEL
Signed * muls .*

bvs +.LABEL
Signed << asl .x*

bvs +.LABEL
Signed =+ sdiv .*

bvs +.LABEL
Signed % Not supported on ARM

Signed Cast (8bit) mov rTMP, r?, asr #7

teq, rTMP, r?, asr #31

bne +.LABEL
Signed — Unsigned cmn r?, #0x80000000

bcs +.LABEL
Unsigned + adds .x*

bcs +.LABEL
Unsigned — subs .*

bcc +.LABEL
Unsigned = muls .*

bcs +.LABEL
Unsigned << asl .*

bcs +.LABEL

Unsigned =+ Cannot overflow

Unsigned % Cannot overflow

Unsigned Cast (8bit) cmp r?, #0x100

bcs +.LABEL

cmn r?, #0x80000000
bcs +.LABEL

Unsigned — Signed

Table 5: Proposed standardized integer overflow
checks for ARM

check, although several safe integer libraries have been de-
veloped [22, 37, 18]. For the vast majority of code that does
not use a safe integer library, all developers must currently
write the overflow check manually.

5.2 Further Work

Our implementation has also shown that overflow detec-
tion can be implemented efficiently, but requires hardware
changes for future performance improvements. Our research
has also shown that applying trapping to integer operations
can mitigate or reduce the severity of an integer overflow
vulnerability. Our implementation and any processor im-
provements resulting from our research can benefit numer-
ous higher languages such as PHP, Python, C, C++, and
Swift. Further research of processor improvements is future
work.

Another way to implement saturation on ARM is to utilize
the NEON co-processor if it is available. NEON is a separate
instruction set designed for use in media and batch process-
ing. NEON has built-in saturation instructions, for both
signed and unsigned at various data widths. This would
seem to be an ideal way to have implemented saturation,
however there is additional overhead involved in transferring
data to NEON [3]. We have not measured the cost of using

the NEON core, instead focusing on core ARM assembly in
this paper.

While this paper focused on the ARM instruction set, ex-
panding our GCC implementation to work on x86 or other
processors would involve simply implementing the appro-
priate instruction patterns (insns) for x86. Expanding our
prototype to work with widths other than 32bit is future
work.

6. RELATED WORK

Safe integer libraries like IntSafe [22] and Safelnt [37] aim
to reduce the number of integer overflow vulnerabilities by
providing safe arithmetic functions or macros. Similarly,
GCC 5 includes three built-in functions for performing ad-
dition, subtraction, and multiplication [18]. The built-in
functions return true if an overflow occurred. Our suggested
standardized processor instructions could be used to increase
the performance of all libraries. Safe integer libraries allow
for fine grain control. Unfortunately, they also require that
a library be chosen early in development or that significant
re-architecting of legacy code be performed.

There has also been tremendous work in improving the
performance and accuracy of static analysis tools [42, 8, 9,
28, 29, 6]. Wang et al. [42] attempt to statically detect
integer overflows. Their approach uses multiple analysis
phases to catch invalid invariants, negative array indices,
and traditional integer overflows. Their approach reduces
false positives by using taint analysis in order to identify
possible vulnerable areas of the code. Programmers are still
required to create rules for the analyzer to white-list cer-
tain types of overflows that should not be caught in order to
reduce false positives. Microsoft has employed a static anal-
ysis tool [29] that mixes symbolic execution with constraint
solving to attempt to analyze code at scale to find integer
overflow vulnerabilities. Their tool also encounters issues
with branch analysis and loop unrolling, leading to false neg-
atives. These tools are designed to be used during develop-
ment. One benefit of efficient dynamic detection of integer
overflows in production environments is decreased effort and
time spent during development. Furthermore, checks that
cannot be statically analyzed can be implemented efficiently
at run-time using our approach.

Tools such as KLEE [8], EXE [9], and SmartFuzz [28§]
use symbolic execution techniques to inspect code, generat-
ing fuzzing test cases that will trigger vulnerable conditions.
Programs analyzed using these tools will benefit from our
work for run-time overflow checks that need to be added.

Binary analysis tools [41, 43] have also been used to find
integer overflows. In IntScope [41], binaries are disassem-
bled and the program flow is simulated. IntScope attempts
to match up sources of tainted data (e.g. fread and recv)
with vulnerable sinks (e.g., malloc and alloca), checking
the execution path for overflows. The analysis engine has
to determine the difference between intentional and unin-
tentional overflows added by developers, and overflows that
might be generated by the compiler. Assembly code also
loses type information (e.g., signed vsunsigned), forcing the
tool to infer types. We do not attempt to infer type infor-
mation.

There have been a number of run-time analysis tools [20,
7,17, 16, 11, 10] for detecting integer overflow. Most only at-
tempt to detect signed integer overflow. GCC’s ~ftrapv [17]
add checks during compilation in order to catch signed in-

10

teger overflows during run-time. Others, like BRICK [10]
hook into the program flow through other means. In this
paper, we address remaining performance issues in dynamic
detection and expand coverage. Pre-existing tools could be
easily modified to use our standardized assembly instruc-
tions, receiving the same performance boost.

GCC, when used with the -ftrapv flag, replaces signed
integer operations with function calls into standard library
functions. Unfortunately, -ftrapv does not implement checks
for unsigned integers or shifts, and has no way of detecting
the difference between intentional and unintentional over-
flows. During our performance testing, ftrapv was found to
be significantly slower than our approach.

Clang’s -fsanitize-undefined-behavior compiler flag in-
cludes the Integer Overflow Checker(IOC) [16], and provides
protections similar to -ftrapv. IOC was not designed for
use in production systems, as it incurs a mean performance
overhead of over 50%. BRICK [10] is another tool designed
for run-time checking during testing. It is built on top of
Valgrind [39], and similarly adds a performance overhead of
about 50%.

BLIP [20] is a run-time tool that adds overflow checks
to loop variants in an attempt to reduce buffer overflows
caused by large loops. The patch is limited to only detecting
overflows in loop structures and is not suitable for generically
detecting integer overflows.

RICH [7, 6] defines formal semantics for integers by ap-
plying sub-typing theory and defining rules for safe integer
operations. Integer casting is covered in their implemen-
tation, and integer overflows are caught by up-casting the
operation and later down-casting the result — following the
sub-typing rules defined earlier. Zhang et al. [7] report an
average performance overhead of 3.7%. Our implementation
might be able to increase the performance even more.

IntPatch [44] combines taint-analysis and a custom type
system to reduce the number of checks that need to be in-
serted into a program, reducing the performance overhead.
IntPatch relies on program slicing to reduce the number of
false positives, and reports better performance results than
RICH, at less than 1% during run-time. The analysis phase
of IntPatch takes a significant amount of time.

A change to the integer model in C is proposed by CERT
to adopt a model titled “as-if infinitely ranged integers” [24].
Their proposed model has the compiler automatically han-
dle integer overflows by representing values as if they were
calculated using an infinite integer model, or to trap upon
execution. Our work in this paper would help the perfor-
mance overhead of their proposal.

Regehr argues that hardware traps for integer overflow
are needed [35]. In this paper, we propose one method for
hardware and software to work together, improving the per-
formance of integer overflow trapping to mirror a hardware
implementation. Implementing traps in hardware would de-
crease the size of an application compared to arithmetic fol-
lowed by branches, but would require significant changes in
order for the hardware to understand the difference between
signed and unsigned arithmetic. Bramley [5] argued that the
performance overhead of the branching trap forms of multi-
plication and addition discussed above should be minimal,
however we have shown there is still progress to be made.

7. CONCLUSION

We have introduced assembly language constructs for mit-
igating integer overflow which support further optimization
by hardware vendors. Our processor optimizations are de-
signed to be fast and broadly applicable across many lan-
guages and previous integer overflow protection implementa-
tions. Our approach mirrors what stack cookies [14], ASLR
[38], and non-executable data memory attempt — a class of
programming errors previously exploitable is changed into
a trap and program abort, with minimal performance over-
head.

History has shown that tools which can be enabled by
a simple compiler option to provide benefit to pre-existing
code bases are much more likely to be broadly deployed than
solutions that require a change in developer behavior. With
this in mind, we concentrated on fast and simple run-time
checks that do not depend on static analysis, and can run
on production code. While processor improvements will con-
tinue to reduce the performance overhead of our approach,
this paper presents a significant step toward a broadly de-
ployable solution, regardless of the language.

8. REFERENCES

[1] The Swift Programming Language, 2014th ed., Apple
Inc., Jun 2014, https://developer.apple.com/library/
prerelease/ios/documentation/Swift /Conceptual/
Swift_Programming Language/.

ARM Architecture Reference Manual, ARM v7-A and
ARMv7-R edition, ARM Limited, Apr 2008, aRM
DDI 0406B.

Cortex-A15 Technical Reference Manual, ARM
Limited, May 2010.

Cortex-A8 Technical Reference Manual, ARM
Limited, May 2010.

J. Bramley, “Detection overflow from MUL,” Web
Page (accessed 29 Jul 2014), Aug 2010,
http://community.arm.com/groups/processors/blog/
2010/08/25/detecting-overflow-from-mul.

D. Brumley, D. Song, and J. Slember, “Towards
automatically eliminating integer-based
vulnerabilities,” Carnegie Mellon University, Tech.
Rep. CMU-CS-06-136, Mar 2006,
http://reports-archive.adm.cs.cmu.edu/anon /2006 /
CMU-CS-06-136.pdf.

D. Brumley, C. Tzi-cker, R. Johnson, H. Lin, and

D. Song, “RICH: Automatically protecting against
integer based vulnerabilities,” in Proceedings of the
14th Annual Network € Distributed System Security
Symposium, Feb 2007.

C. Cadar, D. Dunbar, and D. Engler, “KLEE:
Unassisted and automatic generation of high-coverage
tests for complex systems programs,” in Proceedings of
the 8th USENIX Conference on Operating Systems
Design and Implementation, Dec 2008, pp. 209-224.
C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill,
and D. R. Engler, “EXE: Automatically generating
inputs of death,” in Proceedings of the 13th ACM
Conference on Computer and Communications
Security, Oct 2006, pp. 322-335.

P. Chen, Y. Wang, Z. Xin, B. Mao, and L. Xie,
“BRICK: A binary tool for run-time detecting and
locating integer-based vulnerability,” in Proceedings of

11

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

(25]

the 4th International Conference on Availability,
Reliability and Security, Mar 2009, pp. 208-215.

R. Chinchani, A. Iyer, B. Jayaraman, and

S. Upadhyaya, “ARCHERR: Runtime environment
driven program safety,” in Proceedings of the 9th
European Symposium on Research in Computer
Security, Sep 2004, pp. 385-406.

“Clang compiler user’s manual,” Web Page (accessed
10 Aug 2015), Aug 2015,
http://clang.llvim.org/docs/UsersManual.html.

Alpha Architecture Handbook, Version 4 ed., Compaq
Computer Corporation, Oct 1998,
http://www.compaq.com/cpq-

alphaserver /technology /literature/alphaahb.pdf.

C. Cowan, P. Wagle, C. Pu, S. Beattie, and

J. Walpole, “Buffer overflows: Attacks and defenses for
the vulnerability of the decade,” in DARPA
Information Survivability Conference and Ezxpo, Jan
2000, pp. 119-129.

“Multiple integer overflows in alchemy lcd frame-buffer
drivers in the linux kernel,” Web Page (accessed 09
Feb 2015),
http://www.cvedetails.com/cve/CVE-2013-4511/.

W. Dietz, P. Li, J. Regehr, and V. Adve,
“Understanding integer overflow in C/C++,” in
Proceedings of the 34th International Conference on
Software Engineering, Jun 2012, pp. 760-770.
“Options for code generation conventions,” Web Page
(accessed 28 Jul 2014),
https://gce.gnu.org/onlinedocs/gec/Code- Gen-
Options.html.

“GCC 5 release serise changes, new features, and
fixes,” Web Page (accessed 11 Feb 2015), Feb 2015,
https://gce.gnu.org/gee-5/changes.html.

Google, “Issue 245: NaCl/x96 appears to leave return
addresses unaligned when returning through the
springboard,” Web Page (accessed 28 Jul 2014),
http://code.google.com/p/nativeclient /issues/detail?
id=245.

O. Horovitz, “Big loop integer protection,” Phrack,
no. 60, December 2002. [Online|. Available:
http://phrack.org/issues/60/9.html#article

Intel 64 and IA-32 Architectures Software Developer’s
Manual, Combined Volumes: 1, 2A, 2B, 2C, 3A, 3B,
and 3C, 325462nd ed., Intel Corporation, Aug 2012,
http://www.intel.com/content/dam/www /public/us/
en/documents/manuals/64-ia-32-architectures-
software-developer-manual-325462.pdf.

“IntSafe,” Web Page (accessed 14 May 2014),
http://msdn.microsoft.com/en-

us/library /windows/desktop/ff521693.

ISO, ISO/IEC 9899:2011 - Information Technology —
Programming Languages — C, 2012.

D. Keaton, T. Plum, R. Seacord, D. Svoboda,

A. Volkovitsk, and T. Wilson, “As-if infinitely ranged
integer model,” Carnegie Mellon Software Engineering
Institute, Tech. Rep. CMU/SEI-2009-TN-023, July
2009, http://www.sei.cmu.edu/reports/09tn023.pdf.
P. Mell, K. Scarfone, and S. Romanosky, “A complete
guide to the common vulnerability scoring system
version 2.0,” Web Page (accessed 28 Jul 2014),
http://www.first.org/cvss/cvss-guide.html.

https://developer.apple.com/library/prerelease/ios/documentation/Swift/Conceptual/Swift_Programming_Language/
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Conceptual/Swift_Programming_Language/
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Conceptual/Swift_Programming_Language/
http://community.arm.com/groups/processors/blog/2010/08/25/detecting-overflow-from-mul
http://community.arm.com/groups/processors/blog/2010/08/25/detecting-overflow-from-mul
http://reports-archive.adm.cs.cmu.edu/anon/2006/CMU-CS-06-136.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2006/CMU-CS-06-136.pdf
http://clang.llvm.org/docs/UsersManual.html
http://www.compaq.com/cpq-alphaserver/technology/literature/alphaahb.pdf
http://www.compaq.com/cpq-alphaserver/technology/literature/alphaahb.pdf
http://www.cvedetails.com/cve/CVE-2013-4511/
https://gcc.gnu.org/onlinedocs/gcc/Code-Gen-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Code-Gen-Options.html
https://gcc.gnu.org/gcc-5/changes.html
http://code.google.com/p/nativeclient/issues/detail?id=245
http://code.google.com/p/nativeclient/issues/detail?id=245
http://phrack.org/issues/60/9.html#article
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://msdn.microsoft.com/en-us/library/windows/desktop/ff521693
http://msdn.microsoft.com/en-us/library/windows/desktop/ff521693
http://www.sei.cmu.edu/reports/09tn023.pdf
http://www.first.org/cvss/cvss-guide.html

[26]

[35]

[36]

T. Mertes, “C as intermediate language, signed integer
overflow and -ftrapv,” Web Page (accessed 24 Jul
2015), Jul 2014,
https://gce.gnu.org/ml/gec/2014-07/msg00251. html.
MIPS Architecture For Programmers Volume II-A:
The MIPS32 Instruction Set, 5th ed., MIPS
Technologies Inc., Sep 2013.

D. Molnar, X. C. Li, and D. A. Wagner, “Dynamic
test generation to find integer bugs in x86 binary
Linux programs,” in Proceedings of the 18th USENIX
Security Symposium, Aug 2009, pp. 67-82.

Y. Moy, N. Bjorner, and D. Sielaff, “Modular
bug-finding for integer overflows in the large: Sound,
efficient, bit-precise static analysis,” Microsoft
Research, Tech. Rep. MSR-TR-2009-57, May 2009.
NIST, “National vulnerability database,” Web Page
(accessed 28 Jul 2014), http://nvd.nist.gov.

“Php: Integers,” Web Page (accessed 25 May, 2014,
http:
//php.net/manual/en/language.types.integer.php.
“Built-in types - python 3.5.0 documentation,” Web
Page (accessed 25 May, 2014),
https://docs.python.org/3.5/library /stdtypes.html.

J. Regehr, “A guide to undefined behaviour in C and
C++, part 1,” Web Page (accessed 25 May, 2014),
University of Utah, Jul 2010,
http://blog.regehr.org/archives/213.

——, “A guide to undefined behaviour in C and C++,
part 2,” Web Page (accessed 25 May, 2014), University
of Utah, Jul 2010,
http://blog.regehr.org/archives/226.

——, “We need hardware traps for integer overflow,”
Web Page (accessed 28 May, 2014), May 2014,
http://blog.regehr.org/archives/1154.

M. Rinard, C. Cadar, D. Dumitran, D. M. Roy,

T. Leu, and W. S. J. Beebee, “Enhancing server

12

37]

(38]

39]
(40]

(41]

(42]

(43]

[44]

availability and security through failure-oblivious
computing,” in Proceedings of the 6th USENIX
Conference on Operating Systems Design and
Implementation, Dec 2004, pp. 303-316.

“Safelnt,” Web Page (accessed 14 May 2014),
http://safeint.codeplex.com.

H. Shacham, M. Page, B. Pfaff, E.-J. Goh,

N. Modadugu, and D. Boneh, “On the effectiveness of
address-space randomization,” in Proc. 11th ACM
Conference on Computer and Communications
Security, Oct 2004, pp. 298-307.

“Valgrind,” Web Page, http://valgrind.org.

F. von Leitner, “Catching integer overflows in c,” Web
Page (accessed 9 Feb 2015), Jan 2007,
http://www.fefe.de/intof.html.

T. Wang, T. Wei, Z. Lin, and W. Zou, “IntScope:
Automatically detecting integer overflow vulnerability
in X86 binary using symbolic execution,” in
Proceedings of the 16th Annual Network & Distributed
System Security Symposium, Feb 2009.

X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F.
Kaashoek, “Improving integer security for systems
with KINT,” in Proceedings of the 10th USENIX
Conference on Operating Systems Design and
Implementation, Oct 2012, pp. 163-177.

R. Wojtczuk, “UQBTng: a tool capable of
automatically finding integer overflows in Win32
binaries,” in Proceedings of the 22nd Chaos
Communication Congress, Dec 2005.

C. Zhang, T. Wang, T. Wei, Y. Chen, and W. Zou,
“Intpatch: Automatically fix
integer-overflow-to-buffer-overflow vulnerability at
compile-time,” in Proceedings of the 15th European
Conference on Research in Computer Security, Sep
2010, pp. 71-86.

https://gcc.gnu.org/ml/gcc/2014-07/msg00251.html
http://nvd.nist.gov
http://php.net/manual/en/language.types.integer.php
http://php.net/manual/en/language.types.integer.php
https://docs.python.org/3.5/library/stdtypes.html
http://blog.regehr.org/archives/213
http://blog.regehr.org/archives/226
http://blog.regehr.org/archives/1154
http://safeint.codeplex.com
http://valgrind.org
http://www.fefe.de/intof.html

	Introduction and Overview
	Overview and Background
	Integer Overflow Vulnerabilities
	Detection of Overflow in Languages
	A note on Saturation

	Implementation
	Signed Overflows
	Addition & Subtraction
	Multiplication
	Left Shift
	Truncation
	Casting to Unsigned

	Unsigned Overflows
	Addition & Subtraction
	Multiplication
	Left Shift
	Truncation
	Casting to Signed

	Adding Integer Overflow Checking to GCC

	Results
	Performance
	Intentional Overflows
	Limitations of the Prototype

	Building on the Solution
	A Proposed Path Forward
	Further Work

	Related Work
	Conclusion
	References
	References

